论文标题
Hohenberg-Mermin-Wagner型定理和偶极对称性对称性
Hohenberg-Mermin-Wagner-type theorems and dipole symmetry
论文作者
论文摘要
我们研究了具有电荷和偶极对称性的系统中自发对称性破坏的可能性。对于$ d $二维的系统,我们表明,对于$ d \ leq 4 $,电荷对称性不能自发打破,而偶极对称性不能以$ d \ leq 2 $自发打破。对于$ t = 0 $,我们表明,如果可压缩性是有限的,则不能自发打破$ d \ leq 2 $。我们还表明,具有偶极对称性的连续体系统具有无限的惯性质量密度。
We study the possibility of spontaneous symmetry breaking in systems with both charge and dipole symmetries. For $d$-dimensional systems at a positive temperature, we show that charge symmetry cannot be spontaneously broken for $d\leq 4$, while dipole symmetry cannot be spontaneously broken for $d\leq 2$. For $T=0$, we show that charge symmetry cannot be spontaneously broken for $d\leq 2$ if the compressibility is finite. We also show that continuum systems with a dipole symmetry have infinite inertial mass density.