论文标题

受拓扑保护的四维光学奇异性

Topologically protected four-dimensional optical singularities

论文作者

Spaegele, Christina M., Tamagnone, Michele, Lim, Soon Wei Daniel, Ossiander, Marcus, Meretska, Maryna L., Capasso, Federico

论文摘要

光学奇异性在现代光学器件中起主要作用,并且经常在结构化的光,超分辨率显微镜和全息图中部署。尽管相位奇异性被唯一地定义为未定义相位的位置,但到目前为止所研究的极化奇异性要么是部分的,即定义明确的极化的明亮点,要么在小场扰动中不稳定。我们首次证明了完整的,拓扑保护的极化奇异性。它位于由三个空间维度和波长跨越的4D空间中,并以级联的元图透镜系统的重点创建。雅各布田领域在这种高维奇点的设计中起着关键作用,可以扩展到多维波现象,并为在拓扑光子学和精确传感中的新应用铺平了道路。

Optical singularities play a major role in modern optics and are frequently deployed in structured light, super-resolution microscopy, and holography. While phase singularities are uniquely defined as locations of undefined phase, polarization singularities studied thus far are either partial, i.e., bright points of well-defined polarization, or unstable for small field perturbations. We demonstrate for the first time a complete, topologically protected polarization singularity; it is located in the 4D space spanned by the three spatial dimensions and the wavelength and is created in the focus of a cascaded metasurface-lens system. The field Jacobian plays a key role in the design of such higher-dimensional singularities, which can be extended to multidimensional wave phenomena, and pave the way to novel applications in topological photonics and precision sensing.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源