论文标题
相对刺穿磁盘上连接的对数分解
Logarithmic decomposition of connections on a relatively punctured disk
论文作者
论文摘要
令$ r = c [[t]] $是代数封闭的特征零字段$ c $的力量序列。我们表明,有限的平面$ r((x)$ - 模块上的每个连接都是常规奇异连接的总和,而对角线的$ r(((x))$ - 线性内态性在承认turrittin-levelt-jordan形式超过$ r((x))$时。该分解与给定连接的还原模量$ t^{k} $获得的对数分解的极限兼容。
Let $R=C[[t]]$ be the ring of power series over an algebraically closed field $C$ of characteristic zero. We show that each connection on a finite flat $R((x))$-module is the sum of a regular singular connection and a diagonalizable $R((x))$-linear endomorphism when it admits a Turrittin-Levelt-Jordan form over $R((x))$. This decomposition is compatible with the limit of the logarithmic decompositions of the connections obtained by the reduction modulo $t^{k}$ of a given connection.