论文标题

自适应部分观察到的顺序变化检测和分离

Adaptive Partially-Observed Sequential Change Detection and Isolation

论文作者

Zhao, Xinyu, Hu, Jiuyun, Mei, Yajun, Yan, Hao

论文摘要

由于现代工业应用中传感器的易于访问性,高维数据已变得流行。但是,一个具体的挑战是,由于有限的传感能力和资源限制,通常不容易获得完整的测量。此外,系统中可能存在明显的故障模式,并且有必要识别真正的故障模式。这项工作重点是在具有多种潜在故障模式的资源受限环境中对高维数据的在线自适应监视。为了实现这一目标,我们建议将Shiryaev-Roberts程序应用于故障模式水平,并利用多臂匪徒来平衡勘探和剥削。我们进一步讨论了所提出的算法的理论特性,以表明所提出的方法可以正确隔离故障模式。最后,大量的模拟和两个案例研究表明,可以大大提高变化点检测性能和故障模式隔离精度。

High-dimensional data has become popular due to the easy accessibility of sensors in modern industrial applications. However, one specific challenge is that it is often not easy to obtain complete measurements due to limited sensing powers and resource constraints. Furthermore, distinct failure patterns may exist in the systems, and it is necessary to identify the true failure pattern. This work focuses on the online adaptive monitoring of high-dimensional data in resource-constrained environments with multiple potential failure modes. To achieve this, we propose to apply the Shiryaev-Roberts procedure on the failure mode level and utilize the multi-arm bandit to balance the exploration and exploitation. We further discuss the theoretical property of the proposed algorithm to show that the proposed method can correctly isolate the failure mode. Finally, extensive simulations and two case studies demonstrate that the change point detection performance and the failure mode isolation accuracy can be greatly improved.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源