论文标题

内部原球磁盘的时间依赖性的长期流体动力模拟II:恒星旋转的重要性

Time-dependent, long-term hydrodynamic simulations of the inner protoplanetary disk II: The importance of stellar rotation

论文作者

Gehrig, Lukas, Steiner, Daniel, Vorobyov, Eduard, Güdel, Manuel

论文摘要

年轻的原恒星的自旋进化,周围是积聚磁盘,仍然为观察和理论模型带来了问题。在最近的研究中,详细阐述了磁性星盘相互作用对恒星自旋进化的重要性。但是,这些研究中的积聚磁盘仅由简化模型表示,并且不考虑重要特征。我们将隐式流体动力Tapir磁盘代码与出色的自旋进化模型相结合。恒星磁场对磁盘动力学,内部磁盘半径的径向位置以及恒星旋转对磁盘的影响的影响是自兼而有的。在定义的参数空间内,我们可以重现在年轻恒星簇中观察到的大多数快速和缓慢的旋转星。此外,可以分析磁盘上不同恒星自旋进化轨道的背部反应。围绕快速旋转的星星的磁盘靠近恒星。因此,与缓慢的旋转恒星相比,最内向磁盘区域的磁盘中平面温度显着增加。我们可以显示出恒星旋转对情节增生爆发的影响。快速旋转恒星周围的磁盘的较高温度导致爆发更多,并且在整个磁盘寿命中爆发更长的爆发期。长期流体动力盘和恒星自旋进化模型的组合允许包含先前未经考虑的效果,例如恒星旋转对长期磁盘演化的后反应以及增生爆发的发生。但是,必须研究更广泛的参数范围,以进一步研究这些效果。此外,我们的模型与更现实的恒星演化代码(例如,梅萨代码)之间的可能相互作用可以提高我们对恒星旋转演化的理解及其对梅因序列星的影响。

The spin evolution of young protostars, surrounded by an accretion disk, still poses problems for observations and theoretical models. In recent studies, the importance of the magnetic star-disk interaction for stellar spin evolution has been elaborated. The accretion disk in these studies, however, is only represented by a simplified model and important features are not considered. We combined the implicit hydrodynamic TAPIR disk code with a stellar spin evolution model. The influence of stellar magnetic fields on the disk dynamics, the radial position of the inner disk radius, as well as the influence of stellar rotation on the disk were calculated self-consistently. Within a defined parameter space, we can reproduce the majority of fast and slow rotating stars observed in young stellar clusters. Additionally, the back reaction of different stellar spin evolutionary tracks on the disk can be analyzed. Disks around fast rotating stars are located closer to the star. Consequently, the disk midplane temperature in the innermost disk region increases significantly compared to slow rotating stars. We can show the effects of stellar rotation on episodic accretion outbursts. The higher temperatures of disks around fast rotating stars result in more outbursts and a longer outbursting period over the disk lifetime. The combination of a long-term hydrodynamic disk and a stellar spin evolution model allows the inclusion of previously unconsidered effects such as the back-reaction of stellar rotation on the long-term disk evolution and the occurrence of accretion outbursts. However, a wider parameter range has to be studied to further investigate these effects. Additionally, a possible interaction between our model and a more realistic stellar evolution code (e.g., the MESA code) can improve our understanding of the stellar spin evolution and its effects on the pre-main sequence star.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源