论文标题

肌肉骨骼和神经系统疾病预测的两潮卷积网络

A Two-stream Convolutional Network for Musculoskeletal and Neurological Disorders Prediction

论文作者

Zhu, Manli, Men, Qianhui, Ho, Edmond S. L., Leung, Howard, Shum, Hubert P. H.

论文摘要

肌肉骨骼和神经系统疾病是老年人行走问题的最常见原因,并且经常导致生活质量降低。分析步行运动数据手动需要训练有素的专业人员,并且评估可能并不总是客观的。为了促进早期诊断,最近基于深度学习的方法显示了自动分析的有希望的结果,这些方法可以发现传统的机器学习方法中未发现的模式。我们观察到,现有工作主要应用于单个联合特征,例如时间序列的联合职位。由于发现了诸如通常较小规模的医疗数据集的脚之间的距离(即步幅宽度)之类的挑战,因此这些方法通常是优选的。结果,我们提出了一种解决方案,该解决方案显式地将单个关节特征和关节间特征作为输入,从而使系统免于从小数据中发现更复杂的功能。由于两种特征的独特性质,我们引入了一个两流框架,其中一个流从关节位置的时间序列中学习,另一个从相对关节位移的时间序列中学习。我们进一步开发了一个中层融合模块,以将发现的两个流中发现的模式结合起来进行诊断,从而导致数据的互补表示,以获得更好的预测性能。我们使用3D骨架运动的基准数据集涉及45例肌肉骨骼和神经系统疾病的患者,并实现95.56%的预测准确性,表现优于最先进的方法。

Musculoskeletal and neurological disorders are the most common causes of walking problems among older people, and they often lead to diminished quality of life. Analyzing walking motion data manually requires trained professionals and the evaluations may not always be objective. To facilitate early diagnosis, recent deep learning-based methods have shown promising results for automated analysis, which can discover patterns that have not been found in traditional machine learning methods. We observe that existing work mostly applies deep learning on individual joint features such as the time series of joint positions. Due to the challenge of discovering inter-joint features such as the distance between feet (i.e. the stride width) from generally smaller-scale medical datasets, these methods usually perform sub-optimally. As a result, we propose a solution that explicitly takes both individual joint features and inter-joint features as input, relieving the system from the need of discovering more complicated features from small data. Due to the distinctive nature of the two types of features, we introduce a two-stream framework, with one stream learning from the time series of joint position and the other from the time series of relative joint displacement. We further develop a mid-layer fusion module to combine the discovered patterns in these two streams for diagnosis, which results in a complementary representation of the data for better prediction performance. We validate our system with a benchmark dataset of 3D skeleton motion that involves 45 patients with musculoskeletal and neurological disorders, and achieve a prediction accuracy of 95.56%, outperforming state-of-the-art methods.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源