论文标题

介意蒸馏风格的差距

Mind the Gap in Distilling StyleGANs

论文作者

Xu, Guodong, Hou, Yuenan, Liu, Ziwei, Loy, Chen Change

论文摘要

Stylegan家族是无条件产生的最受欢迎的生成对抗网络(GAN)之一。尽管其性能令人印象深刻,但对存储和计算的高需求仍阻碍了他们在资源约束设备上的部署。本文提供了一项全面的研究,以从流行的Stylegan式建筑中提取。我们的关键见解是,StyleGAN蒸馏的主要挑战在于输出差异问题,在该问题中,教师和学生模型在给定相同的输入潜在代码的情况下产生不同的输出。标准知识蒸馏损失通常在这种异质蒸馏场景下失败。我们对此差异问题的原因和影响进行彻底分析,并确定映射网络在确定生成图像的语义信息中起着至关重要的作用。基于这一发现,我们为学生模型提出了一种新颖的初始化策略,该策略可以确保最大程度的输出一致性。为了进一步增强教师和学生模型之间的语义一致性,我们提出了基于潜在的蒸馏损失,可保留潜在空间中的语义关系。广泛的实验证明了我们方法在蒸馏式stylegan2和stylegan3中的有效性,超过了现有的gan蒸馏方法的大幅度。

StyleGAN family is one of the most popular Generative Adversarial Networks (GANs) for unconditional generation. Despite its impressive performance, its high demand on storage and computation impedes their deployment on resource-constrained devices. This paper provides a comprehensive study of distilling from the popular StyleGAN-like architecture. Our key insight is that the main challenge of StyleGAN distillation lies in the output discrepancy issue, where the teacher and student model yield different outputs given the same input latent code. Standard knowledge distillation losses typically fail under this heterogeneous distillation scenario. We conduct thorough analysis about the reasons and effects of this discrepancy issue, and identify that the mapping network plays a vital role in determining semantic information of generated images. Based on this finding, we propose a novel initialization strategy for the student model, which can ensure the output consistency to the maximum extent. To further enhance the semantic consistency between the teacher and student model, we present a latent-direction-based distillation loss that preserves the semantic relations in latent space. Extensive experiments demonstrate the effectiveness of our approach in distilling StyleGAN2 and StyleGAN3, outperforming existing GAN distillation methods by a large margin.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源