论文标题

二维Hubbard模型中的导热率和热扩散

Thermal conductivity and heat diffusion in the two-dimensional Hubbard model

论文作者

Ulaga, Martin, Mravlje, Jernej, Prelovšek, Peter, Kokalj, Jure

论文摘要

我们研究了使用有限的体温lanczos方法,研究了电子导热率$κ__\ textrm {el} $和在方格晶格哈伯德模型中的热扩散常数$ d_ \ textrm {q,el} $。我们利用Nernst-Einstein关系来进行热传输,并解释了$κ__\ textrm {el} $的强非单调温度依赖性,该依赖性在$ d_ \ textrm {q,el} $和电子特定热量$ c_ \ c_ \ c_ \ textrm {el} $的情况下。我们还介绍了Heisenberg模型在方格和梯子几何形状上的结果。我们研究掺杂的效果,并考虑了动态平均场理论的掺杂情况。我们表明,在几乎所有计算的机制中,$κ__\ textrm {el} $低于相应的Mott-ioffe-Regel值,而平均自由路径通常高于或接近晶格间距。我们讨论了准粒子重新规范化对电荷和热扩散常数的相反作用。我们计算Lorenz的比率,并表明它与Sommerfeld值不同。我们讨论了与丘比特实验有关的结果。此外,我们计算了各向异性边缘液体液体现象学方法中过量库酸酯的导热率。

We study the electronic thermal conductivity $κ_\textrm{el}$ and the thermal diffusion constant $D_\textrm{Q,el}$ in the square lattice Hubbard model using the finite-temperature Lanczos method. We exploit the Nernst-Einstein relation for thermal transport and interpret the strong non-monotonous temperature dependence of $κ_\textrm{el}$ in terms of that of $D_\textrm{Q,el}$ and the electronic specific heat $c_\textrm{el}$. We present also the results for the Heisenberg model on a square lattice and ladder geometries. We study the effects of doping and consider the doped case also with the dynamical mean-field theory. We show that $κ_\textrm{el}$ is below the corresponding Mott-Ioffe-Regel value in almost all calculated regimes, while the mean free path is typically above or close to lattice spacing. We discuss the opposite effect of quasi-particle renormalization on charge and heat diffusion constants. We calculate the Lorenz ratio and show that it differs from the Sommerfeld value. We discuss our results in relation to experiments on cuprates. Additionally, we calculate the thermal conductivity of overdoped cuprates within the anisotropic marginal Fermi liquid phenomenological approach.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源