论文标题

评估上下文和语义域移动的持续测试时间适应

Evaluating Continual Test-Time Adaptation for Contextual and Semantic Domain Shifts

论文作者

Kerssies, Tommie, Kılıçkaya, Mert, Vanschoren, Joaquin

论文摘要

在本文中,我们的目标是在测试时调整预训练的卷积神经网络对域的变化。我们在没有标签的没有标签的测试批次流中不断地这样做。现有的文献主要是在通过测试图像的对抗扰动获得的人工偏移上运作。在此激励的情况下,我们评估了域转移的两个现实和挑战性的来源,即背景和语义转变。上下文移动与环境类型相对应,例如,在室内上下文中预先训练的模型必须适应Core-50上的户外上下文。语义转移对应于捕获类型,例如,在自然图像上预先训练的模型必须适应域内剪贴画,草图和绘画。我们在分析中包括了最近的技术,例如预测时间批归一化(BN),测试熵最小化(帐篷)和持续的测试时间适应(CottA)。我们的发现是三个方面的:i)与语义转移相比,测试时间适应方法的表现更好,而在上下文转移方面的表现较小,ii)帐篷在短期适应方面的表现优于其他方法,而Cotta对长期适应的其他方法超过了其他方法,III)BN是最可靠和强大的。我们的代码可在https://github.com/tommiekerssies/evaluating-continual-test-time-apaptation-for-contextual-and-sextual-and-smantic-smantic-smantic-smantic-shifts获得。

In this paper, our goal is to adapt a pre-trained convolutional neural network to domain shifts at test time. We do so continually with the incoming stream of test batches, without labels. The existing literature mostly operates on artificial shifts obtained via adversarial perturbations of a test image. Motivated by this, we evaluate the state of the art on two realistic and challenging sources of domain shifts, namely contextual and semantic shifts. Contextual shifts correspond to the environment types, for example, a model pre-trained on indoor context has to adapt to the outdoor context on CORe-50. Semantic shifts correspond to the capture types, for example a model pre-trained on natural images has to adapt to cliparts, sketches, and paintings on DomainNet. We include in our analysis recent techniques such as Prediction-Time Batch Normalization (BN), Test Entropy Minimization (TENT) and Continual Test-Time Adaptation (CoTTA). Our findings are three-fold: i) Test-time adaptation methods perform better and forget less on contextual shifts compared to semantic shifts, ii) TENT outperforms other methods on short-term adaptation, whereas CoTTA outpeforms other methods on long-term adaptation, iii) BN is most reliable and robust. Our code is available at https://github.com/tommiekerssies/Evaluating-Continual-Test-Time-Adaptation-for-Contextual-and-Semantic-Domain-Shifts.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源