论文标题

薄弱的$ω$ - 类别作为归纳类型的ctucads

Computads for weak $ω$-categories as an inductive type

论文作者

Dean, Christopher J., Finster, Eric, Markakis, Ioannis, Reutter, David, Vicary, Jamie

论文摘要

我们通过给出免费单词的明确归纳定义,对弱球状$ω$分类的Computads进行了新的描述。这产生了对Computads的新理解,并允许对$ω$ - 类别进行新的定义,从而避免了球形作业的技术。我们的框架允许通过结构诱导直接证明重要结果,我们使用它来提供新的证据,证明每一个$ω$ - 类别都等同于免费的,而具有生成器保留地图的Computads类别是Presheaf topos,是一个直接描述索引类别。我们证明,我们对$ω$ - 类别的定义与Batanin和Leinster的定义一致,并且以$ω$ - 类别的诱导的同事替代概念恰好与Garner相吻合。

We give a new description of computads for weak globular $ω$-categories by giving an explicit inductive definition of the free words. This yields a new understanding of computads, and allows a new definition of $ω$-category that avoids the technology of globular operads. Our framework permits direct proofs of important results via structural induction, and we use this to give new proofs that every $ω$-category is equivalent to a free one, and that the category of computads with generator-preserving maps is a presheaf topos, giving a direct description of the index category. We prove that our resulting definition of $ω$-category agrees with that of Batanin and Leinster and that the induced notion of cofibrant replacement for $ω$-categories coincides with that of Garner.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源