论文标题
域摄像机的适应和协作性多元功能聚类,用于无监督的人re-id
Domain Camera Adaptation and Collaborative Multiple Feature Clustering for Unsupervised Person Re-ID
论文作者
论文摘要
最近无监督的人重新识别(RE-ID)引起了广泛的关注,因为其开放世界情景设置有限,可以使用有限的注释数据。现有的监督方法通常无法很好地概括在看不见的域上,而无监督的方法(主要缺乏多范围的信息),并且容易患有确认偏见。在本文中,我们旨在从两个方面从看不见的目标域上找到更好的特征表示形式,1)在标记的源域上进行无监督域的适应性和2)2)在未标记的目标域上挖掘潜在的相似性。此外,提出了一种协作伪标记的策略,以减轻确认偏见的影响。首先,使用生成对抗网络将图像从源域转移到目标域。此外,引入了人身份和身份映射损失,以提高生成图像的质量。其次,我们提出了一个新颖的协作多元特征聚类框架(CMFC),以学习目标域的内部数据结构,包括全局特征和部分特征分支。全球特征分支(GB)在人体图像的全球特征上采用了无监督的聚类,而部分特征分支(PB)则在不同人体区域内采用相似性。最后,在两个基准数据集上进行的广泛实验表明,在无监督的人重新设置下,我们的方法的竞争性能。
Recently unsupervised person re-identification (re-ID) has drawn much attention due to its open-world scenario settings where limited annotated data is available. Existing supervised methods often fail to generalize well on unseen domains, while the unsupervised methods, mostly lack multi-granularity information and are prone to suffer from confirmation bias. In this paper, we aim at finding better feature representations on the unseen target domain from two aspects, 1) performing unsupervised domain adaptation on the labeled source domain and 2) mining potential similarities on the unlabeled target domain. Besides, a collaborative pseudo re-labeling strategy is proposed to alleviate the influence of confirmation bias. Firstly, a generative adversarial network is utilized to transfer images from the source domain to the target domain. Moreover, person identity preserving and identity mapping losses are introduced to improve the quality of generated images. Secondly, we propose a novel collaborative multiple feature clustering framework (CMFC) to learn the internal data structure of target domain, including global feature and partial feature branches. The global feature branch (GB) employs unsupervised clustering on the global feature of person images while the Partial feature branch (PB) mines similarities within different body regions. Finally, extensive experiments on two benchmark datasets show the competitive performance of our method under unsupervised person re-ID settings.