论文标题
基于AOI的时间关注图神经网络,用于流行性预测和内容缓存
AoI-based Temporal Attention Graph Neural Network for Popularity Prediction and Content Caching
论文作者
论文摘要
随着网络技术的快速发展和网络设备的快速增长,数据吞吐量也大大增加。为了解决蜂窝网络中回程瓶颈的问题并满足人们对延迟的要求,基于预测的结果,网络体系结构等网络体系结构旨在主动将有限的流行内容保持在网络边缘。同时,内容(例如,深度神经网络模型,与Wikipedia类似的知识库)和用户之间的相互作用可以视为动态的两部分图。在本文中,为了最大程度地提高缓存命中率,我们利用有效的动态图神经网络(DGNN)共同学习嵌入了两部分图中的结构和时间模式。此外,为了更深入了解不断发展的图表中的动态,我们提出了一个基于信息时代(AOI)的注意机制,以提取有价值的历史信息,同时避免消息陈旧的问题。结合了上述预测模型,我们还开发了一种缓存选择算法,以根据预测结果做出缓存决策。广泛的结果表明,与两个现实世界数据集中的其他最先进的方案相比,我们的模型可以获得更高的预测准确性。命中率的结果进一步验证了基于我们提出的模型而不是其他传统方式的缓存政策的优势。
Along with the fast development of network technology and the rapid growth of network equipment, the data throughput is sharply increasing. To handle the problem of backhaul bottleneck in cellular network and satisfy people's requirements about latency, the network architecture like information-centric network (ICN) intends to proactively keep limited popular content at the edge of network based on predicted results. Meanwhile, the interactions between the content (e.g., deep neural network models, Wikipedia-alike knowledge base) and users could be regarded as a dynamic bipartite graph. In this paper, to maximize the cache hit rate, we leverage an effective dynamic graph neural network (DGNN) to jointly learn the structural and temporal patterns embedded in the bipartite graph. Furthermore, in order to have deeper insights into the dynamics within the evolving graph, we propose an age of information (AoI) based attention mechanism to extract valuable historical information while avoiding the problem of message staleness. Combining this aforementioned prediction model, we also develop a cache selection algorithm to make caching decisions in accordance with the prediction results. Extensive results demonstrate that our model can obtain a higher prediction accuracy than other state-of-the-art schemes in two real-world datasets. The results of hit rate further verify the superiority of the caching policy based on our proposed model over other traditional ways.