论文标题
在$α$ -Excellent图上
On $α$-excellent graphs
论文作者
论文摘要
如果每个顶点$ g $都包含在$ g $的最大独立集中,则图形$ g $是$α$ -EXCELLENT。在本文中,我们描述了$α$ - 欧克美属双分部分图,$α$ - excellent Unicyclic图,$α$ - excellent Simplicial图,$α$ -Excellent Chordal Graphs,$α$α$ -EXCELLENT BLOCK图形,以及我们显示的每个广义Petersen petersen Graphert $ $ -Excelent均为$ -Exccexcelent。
A graph $G$ is $α$-excellent if every vertex of $G$ is contained in some maximum independent set of $G$. In this paper, we characterize $α$-excellent bipartite graphs, $α$-excellent unicyclic graphs, $α$-excellent simplicial graphs, $α$-excellent chordal graphs, $α$-excellent block graphs, and we show that every generalized Petersen graph is $α$-excellent.