论文标题
“与任务相关的自动编码”增强了人类神经科学的机器学习
"Task-relevant autoencoding" enhances machine learning for human neuroscience
论文作者
论文摘要
在人类神经科学中,机器学习可以帮助揭示与受试者行为相关的低维神经表示。但是,最先进的模型通常需要大型数据集进行训练,因此容易过度拟合人类神经影像学数据,这些数据通常只有很少的样本但许多输入维度。在这里,我们利用了这样一个事实,即我们在人类神经科学中寻求的特征恰恰是与受试者行为相关的事实。因此,我们通过分类器增强(Trace)开发了与任务相关的自动编码器,并测试了其与标准自动编码器,变量自动编码器和主要组件分析相比,提取与行为相关的可分离表示的能力,用于两个严重截断的机器学习数据集。然后,我们评估了来自观察动物和物体的59名受试者的fMRI数据的所有模型。 Trace几乎单方面优于所有模型,在发现“清洁剂”,与任务相关的表示方面提高了分类准确性高达12%。这些结果展示了Trace对与人类行为有关的各种数据的潜力。
In human neuroscience, machine learning can help reveal lower-dimensional neural representations relevant to subjects' behavior. However, state-of-the-art models typically require large datasets to train, so are prone to overfitting on human neuroimaging data that often possess few samples but many input dimensions. Here, we capitalized on the fact that the features we seek in human neuroscience are precisely those relevant to subjects' behavior. We thus developed a Task-Relevant Autoencoder via Classifier Enhancement (TRACE), and tested its ability to extract behaviorally-relevant, separable representations compared to a standard autoencoder, a variational autoencoder, and principal component analysis for two severely truncated machine learning datasets. We then evaluated all models on fMRI data from 59 subjects who observed animals and objects. TRACE outperformed all models nearly unilaterally, showing up to 12% increased classification accuracy and up to 56% improvement in discovering "cleaner", task-relevant representations. These results showcase TRACE's potential for a wide variety of data related to human behavior.