论文标题

来自NGC 4051的电离流出的深度,多上述Chandra Hetg研究

A deep, multi-epoch Chandra HETG study of the ionized outflow from NGC 4051

论文作者

Ogorzalek, A., King, A. L., Allen, S. W., Raymond, J. C., Wilkins, D. R.

论文摘要

积极积聚超级黑洞会显着影响其宿主星系的演变,从而通过排出具有广角流出的大量气体,从而截断了进一步的恒星形成。 X射线频带是理解这些黑洞风如何影响其环境的关键,因为流出具有高温($ \ sim $ 10 $^{5-8} $ k)。我们已经开发了一个贝叶斯框架,用于表征活性银河核(AGN)流出,具有提高的探索参数空间和执行健壮模型选择的能力。我们将此框架应用于新的700 ks和315 KS Chandra的档案,高能量传输光栅观察到Seyfert Galaxy NGC 4051。我们发现了NGC 4051固有的六个吸收器。这些风组分跨度速度从400 km s $ s $ s $ s $^{ - 1} $^{ - 1} $ 30,000 km s $ s $ s $^$^$^ - 1}。我们已经确定,最统计学意义的风分量纯粹是碰撞电离的,这是对这种吸收器的首次检测。这条风具有$ t \ oft11^7 $ k和$ v \ oft880 $ km s $^{ - 1} $,并且在两个时期之间保持非常稳定。其他缓慢的组件在整个时间内也保持稳定。快速流出组件在2008年至2016年之间会改变其性能,这表明物理变化或视线进出的云。对于一个快速组件之一,我们获得了迄今为止最紧密的风密度测量值之一,log $ n/$ [cm $^{ - 3} $] = 13.0 $^{+0.01} _ { - 0.02} $,并确定它位于$ \ sim $ \ sim $ 240 gravitation radii。估计的总流出功率超过了5%的侧冲亮度(尽管有较大的不确定性),因此在Galaxy-Black孔相互作用的背景下它很重要。

Actively accreting supermassive black holes significantly impact the evolution of their host galaxies, truncating further star formation by expelling large fractions of gas with wide-angle outflows. The X-ray band is key to understanding how these black hole winds affect their environment, as the outflows have high temperatures ($\sim$10$^{5-8}$K). We have developed a Bayesian framework for characterizing Active Galactic Nuclei (AGN) outflows with an improved ability to explore parameter space and perform robust model selection. We applied this framework to a new 700 ks and an archival 315 ks Chandra High Energy Transmission Gratings observation of the Seyfert galaxy NGC 4051. We have detected six absorbers intrinsic to NGC 4051. These wind components span velocities from 400 km s$^{-1}$ to 30,000 km s$^{-1}$. We have determined that the most statistically significant wind component is purely collisionally ionized, which is the first detection of such an absorber. This wind has $T\approx10^7$ K and $v\approx880$ km s$^{-1}$ and remains remarkably stable between the two epochs. Other slow components also remain stable across time. Fast outflow components change their properties between 2008 and 2016, suggesting either physical changes or clouds moving in and out of the line of sight. For one of the fast components we obtain one of the tightest wind density measurements to date, log $n/$[cm$^{-3}$]=13.0$^{+0.01}_{-0.02}$, and determine that it is located at $\sim$240 gravitational radii. The estimated total outflow power surpasses 5% of the bolometric luminosity (albeit with large uncertainties) making it important in the context of galaxy-black hole interactions.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源