论文标题

半监督语义分段的多视图相关一致性

Multi-View Correlation Consistency for Semi-Supervised Semantic Segmentation

论文作者

Hou, Yunzhong, Gould, Stephen, Zheng, Liang

论文摘要

半监督的语义细分需要对未标记的数据进行丰富而强大的监督。一致性学习强制执行相同的像素在不同的增强视图中具有相似的特征,这是一个强大的信号,但忽略了与其他像素的关系。相比之下,对比度学习考虑了丰富的成对关系,但是为像素对分配二进制阳性阴性监督信号可能是一个难题。在本文中,我们竭尽全力并提出多视图相关性一致性(MVCC)学习:它考虑了自我相关矩阵中的丰富成对关系,并跨越视图以提供强大的监督。加上这种相关性一致性损失,我们提出了一个视图增强策略,该策略保证了不同视图之间的像素像素对应关系。在两个数据集上的一系列半监督设置中,我们报告了与最先进方法相比的竞争精度。值得注意的是,在CityScapes上,我们使用1/8标记的数据达到76.8%的MIOU,比完全监督的Oracle差0.6%。

Semi-supervised semantic segmentation needs rich and robust supervision on unlabeled data. Consistency learning enforces the same pixel to have similar features in different augmented views, which is a robust signal but neglects relationships with other pixels. In comparison, contrastive learning considers rich pairwise relationships, but it can be a conundrum to assign binary positive-negative supervision signals for pixel pairs. In this paper, we take the best of both worlds and propose multi-view correlation consistency (MVCC) learning: it considers rich pairwise relationships in self-correlation matrices and matches them across views to provide robust supervision. Together with this correlation consistency loss, we propose a view-coherent data augmentation strategy that guarantees pixel-pixel correspondence between different views. In a series of semi-supervised settings on two datasets, we report competitive accuracy compared with the state-of-the-art methods. Notably, on Cityscapes, we achieve 76.8% mIoU with 1/8 labeled data, just 0.6% shy from the fully supervised oracle.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源