论文标题

样本路径中的对称和零模式大偏差

Symmetries and zero modes in sample path large deviations

论文作者

Schorlepp, Timo, Grafke, Tobias, Grauer, Rainer

论文摘要

基于在适当的边界条件下弗里德林 - 韦泽尔动作功能最小化的随机微分方程的急剧大偏差估计值,可以通过在较大的偏差最小化器或intsantons或intsantons(随着时间的时候向前或向后落后)积分来获得。以前在这个方向上的工作通常依赖于具有积极的第二个变化的孤立的极简化物的存在。通过采用现场理论的技术,并使用Forman定理将大偏差预先成分作为功能决定因素比率,我们将方法扩展到存在简化的最小化次数的一般系统。为此,关键技术是第二个变体操作员的边界类型正则化。如果系统具有激体顿破坏的连续对称性,则此扩展特别重要。我们发现,在riccati公式中可以删除与零模式相关的消失特征值,并且要修改初始条件或最终条件并评估riccati矩阵。我们将结果应用于多个示例,包括在一维kardar-parisi-zhang方程的短时大偏差中平均表面高度的动态相变。

Sharp large deviation estimates for stochastic differential equations with small noise, based on minimizing the Freidlin-Wentzell action functional under appropriate boundary conditions, can be obtained by integrating certain matrix Riccati differential equations along the large deviation minimizers or instantons, either forward or backward in time. Previous works in this direction often rely on the existence of isolated minimizers with positive definite second variation. By adopting techniques from field theory and explicitly evaluating the large deviation prefactors as functional determinant ratios using Forman's theorem, we extend the approach to general systems where degenerate submanifolds of minimizers exist. The key technique for this is a boundary-type regularization of the second variation operator. This extension is particularly relevant if the system possesses continuous symmetries that are broken by the instantons. We find that removing the vanishing eigenvalues associated with the zero modes is possible within the Riccati formulation and amounts to modifying the initial or final conditions and evaluation of the Riccati matrices. We apply our results in multiple examples including a dynamical phase transition for the average surface height in short-time large deviations of the one-dimensional Kardar-Parisi-Zhang equation with flat initial profile.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源