论文标题

正弦家族中的一维型号中的有限温度动力学

Finite temperature dynamics in gapped 1D models in the sine-Gordon family

论文作者

Kormos, Márton, Vörös, Dániel, Zaránd, Gergely

论文摘要

正弦模型似乎是各种一维间隙量子系统的低能量有效场理论。在这里,我们研究了在有限的温度下,在半经典方法中,在有限温度下属于正弦家族的通用,不可积分系统的动力学。专注于时间尺度,非平凡的准粒子散射变得相关,我们获得了动态相关函数的长期行为的普遍结果。我们发现顶点操作员的相关函数既不是弹道,也不是扩散性的,而是遵循及时的伸展指数衰减。我们还研究了拓扑电流的完整计数统计数据,并发现转移电荷的分布是非高斯的,其累积物在及时地缩放不均匀。

The sine-Gordon model appears as the low-energy effective field theory of various one-dimensional gapped quantum systems. Here we investigate the dynamics of generic, non-integrable systems belonging to the sine-Gordon family at finite temperature within the semiclassical approach. Focusing on time scales where the effect of nontrivial quasiparticle scatterings becomes relevant, we obtain universal results for the long-time behavior of dynamical correlation functions. We find that correlation functions of vertex operators behave neither ballistically nor diffusively but follow a stretched exponential decay in time. We also study the full counting statistics of the topological current and find that distribution of the transferred charge is non-Gaussian with its cumulants scaling non-uniformly in time.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源