论文标题

极端限制中液体的结构特性

Structural properties of liquids in extreme confinement

论文作者

Jung, Gerhard, Franosch, Thomas

论文摘要

我们模拟了一个硬球液体中的牢固的几何形状,其中两个平行的硬壁的分离小于两个颗粒直径。通过系统地减少墙壁分离,我们分析了结构和热力学特性的行为,例如在接近二维极限时,例如不均匀密度曲线,结构因子和压缩性。与渐近预测一致,我们发现准二维流体的密度曲线变成了抛物线,结构因子会收敛于其二维对应物。为了提取多分散样品中的可压缩性,使用了扰动表达,从而定性地影响观察到的可压缩性的非单调依赖性,而壁隔离。我们还基于基本量学理论和积分方程理论介绍了理论计算,这些理论与模拟结果非常吻合。

We simulate a hard-sphere liquid in confined geometry where the separation of the two parallel, hard walls is smaller than two particle diameters. By systematically reducing the wall separation we analyze the behavior of structural and thermodynamic properties, such as inhomogeneous density profiles, structure factors, and compressibilities when approaching the two-dimensional limit. In agreement with asymptotic predictions, we find for quasi-two-dimensional fluids that the density profile becomes parabolic and the structure factor converges towards its two-dimensional counterpart. To extract the compressibility in polydisperse samples a perturbative expression is used which qualitatively influences the observed non-monotonic dependence of the compressibility with wall separation. We also present theoretical calculations based on fundamental-measure theory and integral-equation theory, which are in very good agreement with the simulation results.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源