论文标题
反事实 - 莎普利值:归因于系统指标的变化
The Counterfactual-Shapley Value: Attributing Change in System Metrics
论文作者
论文摘要
鉴于大规模系统的输出度量的意外变化,重要的是要回答发生变化的原因很重要:哪些输入导致了度量的变化?此类归因问题的一个关键组成部分是估计反事实:由于单个输入的指定变化,系统度量的(假设)变化。但是,由于系统部分之间的固有随机性和复杂的相互作用,很难直接对输出度量进行建模。我们利用系统的计算结构将建模任务分解为子部分,因此每个子部分对应于一个更稳定的机制,可以随着时间的推移准确地对其进行准确建模。使用系统的结构还有助于将指标视为结构性因果模型(SCM)的计算,从而提供了一种原则上的估计反事实的方式。具体而言,我们提出了一种使用时间序列预测模型估算反事实的方法,并构建归因得分CF-Shapley,这与所需的公理一致,以归因于观察到的输出度量的变化。与过去关于因果沙普利价值的工作不同,我们提出的方法可以归因于观察到的单个输出变化(而不是人口级效应),因此在模拟数据集上评估时提供了更准确的归因得分。作为现实世界应用,我们分析了一个查询AD匹配系统,其目的是归因于AD匹配密度的度量标准中观察到的变化。归因分数解释了来自不同查询类别的查询量和广告需求如何影响AD匹配密度,从而导致可行的见解并发现外部事件(例如“ Cheetah Day”)在推动匹配密度中的作用(例如“ Cheetah Day”)。
Given an unexpected change in the output metric of a large-scale system, it is important to answer why the change occurred: which inputs caused the change in metric? A key component of such an attribution question is estimating the counterfactual: the (hypothetical) change in the system metric due to a specified change in a single input. However, due to inherent stochasticity and complex interactions between parts of the system, it is difficult to model an output metric directly. We utilize the computational structure of a system to break up the modelling task into sub-parts, such that each sub-part corresponds to a more stable mechanism that can be modelled accurately over time. Using the system's structure also helps to view the metric as a computation over a structural causal model (SCM), thus providing a principled way to estimate counterfactuals. Specifically, we propose a method to estimate counterfactuals using time-series predictive models and construct an attribution score, CF-Shapley, that is consistent with desirable axioms for attributing an observed change in the output metric. Unlike past work on causal shapley values, our proposed method can attribute a single observed change in output (rather than a population-level effect) and thus provides more accurate attribution scores when evaluated on simulated datasets. As a real-world application, we analyze a query-ad matching system with the goal of attributing observed change in a metric for ad matching density. Attribution scores explain how query volume and ad demand from different query categories affect the ad matching density, leading to actionable insights and uncovering the role of external events (e.g., "Cheetah Day") in driving the matching density.