论文标题
在一般类耐力的空间上通过有限的blaschke因子乘以乘以
Multiplication by finite Blaschke factors on a general class of Hardy spaces
论文作者
论文摘要
最近,在单位圆圈中引入了更广泛的耐寒空间和Lebesgue空间,考虑了连续$ \ |。|。\ | _1 $ - 统一的规范规范,而不是可测量的函数的经典规范,并且通过坐标函数为乘法函数提供了beurling类型的结果。在本文中,我们将上述beurling类型的结果推广到通过有限的blaschke因子$ b(z)$乘法的上下文,并得出了$ b^2(z)$和$ b^3(z)$的常见不变子空间。这些结果导致了配备有连续旋转对称标准的强大空间中所有功能的分解结果。
A broader class of Hardy spaces and Lebesgue spaces have been introduced recently on the unit circle by considering continuous $\|.\|_1$-dominating normalized gauge norms instead of the classical norms on measurable functions and a Beurling type result has been proved for the operator of multiplication by the coordinate function. In this paper, we generalize the above Beurling type result to the context of multiplication by a finite Blaschke factor $B(z)$ and also derive the common invariant subspaces of $B^2(z)$ and $B^3(z)$. These results lead to a factorization result for all functions in the Hardy space equipped with a continuous rotationally symmetric norm.