论文标题

来自神经形态硬件的稳态尖峰神经网络中的紧急双重性的自相关性

Autocorrelations from emergent bistability in homeostatic spiking neural networks on neuromorphic hardware

论文作者

Cramer, Benjamin, Kreft, Markus, Billaudelle, Sebastian, Karasenko, Vitali, Leibfried, Aron, Müller, Eric, Spilger, Philipp, Weis, Johannes, Schemmel, Johannes, Muñoz, Miguel A., Priesemann, Viola, Zierenberg, Johannes

论文摘要

神经形态计算的一个独特功能是,内存是通过系统集体动力学中过去信息的痕迹处理的隐含部分。集体动力学的自相关时间通常量化了过去输入的记忆程度。基于过去的实验证据,对潜在自相关的潜在解释是接近临界的波动。在这里,我们展示了自组织的兴奋性和抑制性泄漏整合性神经元网络,这些网络可以自相关可能源于降低外部输入强度的新兴双重性。我们将双态性确定为在非平衡相变的附近的亚稳态活性状态和静态状态之间的波动诱导的随机切换。由于稳态自我组织在开发过程中,具有固定异质权重的网络发生这种双重性。具体而言,在我们关于神经形态硬件和计算机模拟的实验中,尽管单神经元的时间尺度仅为20毫秒,但紧急双重性带来了超过500毫秒的自相关时间。我们的结果提供了在泄漏的集成和开火神经元网络中生物兼容的自相关时间的首次验证,这不是通过接近临界波动而产生的,而是通过稳态调节的网络中的紧急双重性产生。因此,我们的结果构成了一种新的补充机制,用于尖峰神经元网络中出现的自相关,对生物和人工网络产生影响,并引入了波动诱导的对具有吸收状态的驱动系统的波动诱导的保留性的一般范式。

A unique feature of neuromorphic computing is that memory is an implicit part of processing through traces of past information in the system's collective dynamics. The extent of memory about past inputs is commonly quantified by the autocorrelation time of collective dynamics. Based on past experimental evidence, a potential explanation for the underlying autocorrelations are close-to-critical fluctuations. Here, we show for self-organized networks of excitatory and inhibitory leaky integrate-and-fire neurons that autocorrelations can originate from emergent bistability upon reducing external input strength. We identify the bistability as a fluctuation-induced stochastic switching between metastable active and quiescent states in the vicinity of a non-equilibrium phase transition. This bistability occurs for networks with fixed heterogeneous weights as a consequence of homeostatic self-organization during development. Specifically, in our experiments on neuromorphic hardware and in computer simulations, the emergent bistability gives rise to autocorrelation times exceeding 500 ms despite single-neuron timescales of only 20 ms. Our results provide the first verification of biologically compatible autocorrelation times in networks of leaky integrate-and-fire neurons, which here are not generated by close-to-critical fluctuations but by emergent bistability in homeostatically regulated networks. Our results thereby constitute a new, complementary mechanism for emergent autocorrelations in networks of spiking neurons, with implications for biological and artificial networks, and introduces the general paradigm of fluctuation-induced bistability for driven systems with absorbing states.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源