论文标题

对随机Navier-Stokes方程的解决方案的急剧非唯一性

Sharp non-uniqueness of solutions to stochastic Navier-Stokes equations

论文作者

Chen, Weiquan, Dong, Zhao, Zhu, Xiangchan

论文摘要

在本文中,我们为随机$ d $ d $ d $ d $ d $ d $ d $ d $ d $ d $ d $ d \ geq2 $)建立了不可压缩的Navier-Stokes方程。首先,对于$ l^2 $中的每一个无差的初始条件,我们显示了无限的存在,许多全球范围内的概率强度强,并且在$ l^α\ big(ω,l^p_tl^\ infty \ big)$ 1 \ leq p <2,leq p <2,α\ geq1 $中的$ l^α\ big(ω,l^p_tl^\ infty \ big)中的存在。其次,我们证明了上述结果是明显的,因为在[2,\ infty]中的某些$ p \的$ l^p_tl^q $中保持着唯一性,q \ in(2,\ infty] $,因此$ \ frac2 {p}+\ frac}+\ frac {p} ladyzhenskaya-serrodi-serlin标准,与随机的欧拉方程式存在,与\ cite {hzz19,hzz21a is a new new new nek a nek a nek a nek nek a nek Insection cite cite相比我们在凸集成方案中介绍了期望,并在整个时间间隔$ [0,\ infty)$上直接构建解决方案。

In this paper we establish a sharp non-uniqueness result for stochastic $d$-dimensional ($d\geq2$) incompressible Navier-Stokes equations. First, for every divergence free initial condition in $L^2$ we show existence of infinite many global in time probabilistically strong and analytically weak solutions in the class $L^α\big(Ω,L^p_tL^\infty\big)$ for any $1\leq p<2,α\geq1$. Second, we prove the above result is sharp in the sense that pathwise uniqueness holds in the class of $L^p_tL^q$ for some $p\in[2,\infty],q\in(2,\infty]$ such that $\frac2{p}+\frac{d}{q}\leq1$, which is a stochastic version of Ladyzhenskaya-Prodi-Serrin criteria. Moreover, for stochastic $d$-dimensional incompressible Euler equation, existence of infinitely many global in time probabilistically strong and analytically weak solutions is obtained. Compared to the stopping time argument used in \cite{HZZ19, HZZ21a}, we developed a new stochastic version of the convex integration. More precisely, we introduce expectation during convex integration scheme and construct directly solutions on the whole time interval $[0,\infty)$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源