论文标题
股票价格预测的基于变压器的深度学习模型:孟加拉国股票市场的案例研究
Transformer-Based Deep Learning Model for Stock Price Prediction: A Case Study on Bangladesh Stock Market
论文作者
论文摘要
在现代资本市场中,由于各种社会,财务,政治和其他动态因素,股票的价格通常被认为是高度波动和不可预测的。借助计算和周到的投资,股票市场可以通过最少的资本投资来确保可观的利润,而错误的预测可以轻松地为投资者带来灾难性的财务损失。本文介绍了最近引入的机器学习模型的应用 - 变压器模型,以预测孟加拉国领先的证券交易所达卡证券交易所(DSE)的未来价格。变压器模型已被广泛用于自然语言处理和计算机视觉任务,但据我们所知,从未用于DSE的股票价格预测任务。最近,介绍了代表时间序列功能的Time2VEC编码,使得可以使用变压器模型进行股票价格预测。本文集中于基于变压器的模型的应用,以根据其历史日常和每周数据来预测DSE中列出的八个特定股票的价格转移。我们的实验证明了大多数股票的有希望的结果和可接受的根平方误差。
In modern capital market the price of a stock is often considered to be highly volatile and unpredictable because of various social, financial, political and other dynamic factors. With calculated and thoughtful investment, stock market can ensure a handsome profit with minimal capital investment, while incorrect prediction can easily bring catastrophic financial loss to the investors. This paper introduces the application of a recently introduced machine learning model - the Transformer model, to predict the future price of stocks of Dhaka Stock Exchange (DSE), the leading stock exchange in Bangladesh. The transformer model has been widely leveraged for natural language processing and computer vision tasks, but, to the best of our knowledge, has never been used for stock price prediction task at DSE. Recently the introduction of time2vec encoding to represent the time series features has made it possible to employ the transformer model for the stock price prediction. This paper concentrates on the application of transformer-based model to predict the price movement of eight specific stocks listed in DSE based on their historical daily and weekly data. Our experiments demonstrate promising results and acceptable root mean squared error on most of the stocks.