论文标题

基于深度学习的投影结构域金属分割,用于锥形梁计算机扫描中的金属伪影降低

Deep learning based projection domain metal segmentation for metal artifact reduction in cone beam computed tomography

论文作者

Agrawal, Harshit, Hietanen, Ari, Särkkä, Simo

论文摘要

金属伪影校正是锥形束计算机断层扫描(CBCT)扫描中的一个具有挑战性的问题。插入解剖结构的金属植入物在重建图像中引起严重的伪影。广泛使用的基于介入的金属伪像减少(MAR)方法需要将投影中的金属痕迹分割为第一步,这是一项艰巨的任务。一种方法是使用深度学习方法来细分预测中的金属。但是,深度学习方法的成功受到现实培训数据的可用性的限制。由于植入物的界限和大量预测,获得可靠的地面真相注释是艰巨而耗时的。我们建议使用X射线模拟从临床CBCT扫描中生成合成金属分割训练数据集。我们比较了具有不同数量的光子的仿真效果,还比较了增加可用数据的几种培训策略。我们将模型在实际临床扫描中的性能与常规区域增长的基于阈值的MAR,移动金属伪像减少方法以及最近的深度学习方法进行了比较。我们表明,具有相对较少光子的模拟适用于金属分割任务,并且用全尺寸和裁剪的投影训练深度学习模型共同提高了模型的鲁棒性。我们显示出受严重运动,体素尺寸下采样和远离球场金属影响的图像质量的显着改善。我们的方法可以轻松地集成到现有的基于投影的MAR管道中,以提高图像质量。该方法可以为准确分割CBCT投影中的金属提供新的范式。

Metal artifact correction is a challenging problem in cone beam computed tomography (CBCT) scanning. Metal implants inserted into the anatomy cause severe artifacts in reconstructed images. Widely used inpainting-based metal artifact reduction (MAR) methods require segmentation of metal traces in the projections as a first step, which is a challenging task. One approach is to use a deep learning method to segment metals in the projections. However, the success of deep learning methods is limited by the availability of realistic training data. It is laborious and time consuming to get reliable ground truth annotations due to unclear implant boundaries and large numbers of projections. We propose to use X-ray simulations to generate synthetic metal segmentation training dataset from clinical CBCT scans. We compare the effect of simulations with different numbers of photons and also compare several training strategies to augment the available data. We compare our model's performance on real clinical scans with conventional region growing threshold-based MAR, moving metal artifact reduction method, and a recent deep learning method. We show that simulations with relatively small number of photons are suitable for the metal segmentation task and that training the deep learning model with full size and cropped projections together improves the robustness of the model. We show substantial improvement in the image quality affected by severe motion, voxel size under-sampling, and out-of-FOV metals. Our method can be easily integrated into the existing projection-based MAR pipeline to get improved image quality. This method can provide a novel paradigm to accurately segment metals in CBCT projections.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源