论文标题
通过解耦动态空间融合网络进行立体类像素分割
Stereo Superpixel Segmentation Via Decoupled Dynamic Spatial-Embedding Fusion Network
论文作者
论文摘要
立体类像素细分旨在通过左右视图将离散的像素分组为感知区域,以更加协作,有效地分组。现有的Superpixel分割算法主要利用颜色和空间特征作为输入,这可能会对空间信息施加强大的约束,同时使用立体声图像对来利用差异信息。为了减轻此问题,我们提出了一种立体声超级像素细分方法,并在本工作中具有空间信息的脱钩机制。为了解除立体视差信息和空间信息,在融合立体声图像对的功能之前,暂时将删除空间信息,并提出了脱钩的立体声融合模块(DSFM),以处理立体声特征对齐和遮挡问题。此外,由于空间信息对于超像素分割至关重要,因此我们进一步设计了动态空间嵌入模块(DSEM)以重新ADD空间信息,并且将通过DSEM在DSEM中自适应调整空间信息的权重,以实现finer finer finer finer Checepention的DSEM。全面的实验结果表明,我们的方法可以在Kitti2015和CityScapes数据集上实现最先进的性能,并且还可以在NJU2K数据集上的显着对象检测中验证效率。源代码将在接受纸张后公开提供。
Stereo superpixel segmentation aims at grouping the discretizing pixels into perceptual regions through left and right views more collaboratively and efficiently. Existing superpixel segmentation algorithms mostly utilize color and spatial features as input, which may impose strong constraints on spatial information while utilizing the disparity information in terms of stereo image pairs. To alleviate this issue, we propose a stereo superpixel segmentation method with a decoupling mechanism of spatial information in this work. To decouple stereo disparity information and spatial information, the spatial information is temporarily removed before fusing the features of stereo image pairs, and a decoupled stereo fusion module (DSFM) is proposed to handle the stereo features alignment as well as occlusion problems. Moreover, since the spatial information is vital to superpixel segmentation, we further design a dynamic spatiality embedding module (DSEM) to re-add spatial information, and the weights of spatial information will be adaptively adjusted through the dynamic fusion (DF) mechanism in DSEM for achieving a finer segmentation. Comprehensive experimental results demonstrate that our method can achieve the state-of-the-art performance on the KITTI2015 and Cityscapes datasets, and also verify the efficiency when applied in salient object detection on NJU2K dataset. The source code will be available publicly after paper is accepted.