论文标题

极端尺度的谈话视频与视听先验进行更新

Extreme-scale Talking-Face Video Upsampling with Audio-Visual Priors

论文作者

Hegde, Sindhu B, Mukhopadhyay, Rudrabha, Namboodiri, Vinay P, Jawahar, C. V.

论文摘要

在本文中,我们探讨了一个有趣的问题,即从$ 8 \ times8 $ Pixel视频序列中获得什么。令人惊讶的是,事实证明很多。我们表明,当我们处理此$ 8 \ times8 $视频中,带有正确的音频和图像先验的视频时,我们可以获得全长的256 \ times256 $视频。我们使用新颖的视听UPPRAPLING网络实现了非常低分辨率输入的$ 32 \ times $缩放。音频先验有助于恢复元素面部细节和精确的唇形,而单个高分辨率目标身份图像先验为我们提供了丰富的外观细节。我们的方法是端到端的多阶段框架。第一阶段会产生一个粗糙的中间输出视频,然后可用于动画单个目标身份图像并生成逼真,准确和高质量的输出。我们的方法很简单,并且与以前的超级分辨率方法相比,表现非常好($ 8 \ times $改善了FID得分)。我们还将模型扩展到了谈话视频压缩,并表明我们可以从比例/像素来获得$ 3.5 \ times $改进。通过广泛的消融实验(在论文和补充材料中)对我们网络的结果进行了彻底分析。我们还在我们的网站上提供了演示视频以及代码和模型:\ url {http://cvit.iiit.ac.in/research/project/projects/cvit-projects/talking-face-vace-vide-video-upsmpling}。

In this paper, we explore an interesting question of what can be obtained from an $8\times8$ pixel video sequence. Surprisingly, it turns out to be quite a lot. We show that when we process this $8\times8$ video with the right set of audio and image priors, we can obtain a full-length, $256\times256$ video. We achieve this $32\times$ scaling of an extremely low-resolution input using our novel audio-visual upsampling network. The audio prior helps to recover the elemental facial details and precise lip shapes and a single high-resolution target identity image prior provides us with rich appearance details. Our approach is an end-to-end multi-stage framework. The first stage produces a coarse intermediate output video that can be then used to animate single target identity image and generate realistic, accurate and high-quality outputs. Our approach is simple and performs exceedingly well (an $8\times$ improvement in FID score) compared to previous super-resolution methods. We also extend our model to talking-face video compression, and show that we obtain a $3.5\times$ improvement in terms of bits/pixel over the previous state-of-the-art. The results from our network are thoroughly analyzed through extensive ablation experiments (in the paper and supplementary material). We also provide the demo video along with code and models on our website: \url{http://cvit.iiit.ac.in/research/projects/cvit-projects/talking-face-video-upsampling}.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源