论文标题

动态通道的干扰取消GAN框架

Interference Cancellation GAN Framework for Dynamic Channels

论文作者

Nguyen, Hung T., Bottone, Steven, Kim, Kwang Taik, Chiang, Mung, Poor, H. Vincent

论文摘要

符号检测是现代通信系统中的一个基本且具有挑战性的问题,例如多源多输入多输出(MIMO)设置。迭代软干扰取消(SIC)是该任务的最新方法,最近动机的是数据驱动的神经网络模型,例如深度,可以处理未知的非线性通道。但是,这些神经网络模型需要在应用之前对网络进行全面的时间量培训,因此在实践中不容易适合高度动态的渠道。我们介绍了一个在线培训框架,该框架可以迅速适应频道中的任何更改。我们提出的框架将最近的深层发展方法与新兴的生成对抗网络(GAN)统一,以捕获通道中的任何变化,并迅速调整网络以维持模型的最佳性能。我们证明,我们的框架在高度动态的通道上显着优于最近的神经网络模型,甚至超过了我们实验中静态通道上的神经网络模型。

Symbol detection is a fundamental and challenging problem in modern communication systems, e.g., multiuser multiple-input multiple-output (MIMO) setting. Iterative Soft Interference Cancellation (SIC) is a state-of-the-art method for this task and recently motivated data-driven neural network models, e.g. DeepSIC, that can deal with unknown non-linear channels. However, these neural network models require thorough timeconsuming training of the networks before applying, and is thus not readily suitable for highly dynamic channels in practice. We introduce an online training framework that can swiftly adapt to any changes in the channel. Our proposed framework unifies the recent deep unfolding approaches with the emerging generative adversarial networks (GANs) to capture any changes in the channel and quickly adjust the networks to maintain the top performance of the model. We demonstrate that our framework significantly outperforms recent neural network models on highly dynamic channels and even surpasses those on the static channel in our experiments.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源