论文标题
耶和华几何形状中的准f插图
Quasi-F-splittings in birational geometry
论文作者
论文摘要
我们在异性几何形状的背景下发展了准$ f $ splittings的理论。除其他事项外,我们还获得了有关部分的提升性的结果,并确定了雇用高级卡地亚操作员的计划是否是准$ f $ split的标准。作为我们理论的应用之一,我们证明了大特征中的三维KLT奇异性是准$ f $ -Split,因此,尤其是它们提起Modulo $ p^2 $。
We develop the theory of quasi-$F$-splittings in the context of birational geometry. Amongst other things, we obtain results on liftability of sections and establish a criterion for whether a scheme is quasi-$F$-split employing the higher Cartier operator. As one of the applications of our theory, we prove that three-dimensional klt singularities in large characteristic are quasi-$F$-split, and so, in particular, they lift modulo $p^2$.