论文标题

深度学习启用了延时3D单元格分析

Deep Learning Enabled Time-Lapse 3D Cell Analysis

论文作者

Jiang, Jiaxiang, Khan, Amil, Shailja, S., Belteton, Samuel A., Goebel, Michael, Szymanski, Daniel B., Manjunath, B. S.

论文摘要

本文提出了一种延时3D细胞分析的方法。具体而言,我们考虑了准确定位和定量分析亚细胞特征的问题,以及从延时3D共聚焦细胞图像堆栈跟踪单个细胞的问题。细胞的异质性和多维图像的体积提出了对细胞形态发生和发育的完全自动化分析的主要挑战。本文是由路面细胞生长过程和构建定量形态发生模型的动机。我们提出了一种基于深度特征的分割方法,以准确检测和标记每个细胞区域。基于邻接图的方法用于提取分段细胞的亚细胞特征。最后,提出了基于多个单元格特征的基于鲁棒图的跟踪算法,用于在不同的时间实例中关联单元格。提供了广泛的实验结果,并证明了所提出方法的鲁棒性。该代码可在GitHub上获得,该方法可通过Bisque Portal作为服务可用。

This paper presents a method for time-lapse 3D cell analysis. Specifically, we consider the problem of accurately localizing and quantitatively analyzing sub-cellular features, and for tracking individual cells from time-lapse 3D confocal cell image stacks. The heterogeneity of cells and the volume of multi-dimensional images presents a major challenge for fully automated analysis of morphogenesis and development of cells. This paper is motivated by the pavement cell growth process, and building a quantitative morphogenesis model. We propose a deep feature based segmentation method to accurately detect and label each cell region. An adjacency graph based method is used to extract sub-cellular features of the segmented cells. Finally, the robust graph based tracking algorithm using multiple cell features is proposed for associating cells at different time instances. Extensive experiment results are provided and demonstrate the robustness of the proposed method. The code is available on Github and the method is available as a service through the BisQue portal.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源