论文标题

高场极限中翻译不变的磁schrödinger方程的有效动力学

Effective Dynamics of Translationally Invariant Magnetic Schrödinger Equations in the High Field Limit

论文作者

Nenciu, Gheorghe, Richman, Evelyn, Sparber, Christof

论文摘要

我们研究了Schrödinger方程中具有磁性矢量电势的较大磁场限制,这些电位描述了相对于$ z $轴的翻译不变的$ b $ fields。在第一步中,使用常规的扰动理论,我们得出了解决方案的近似描述,前提是在\ \ Mathbb r $中的傅立叶变量双重二元对$ z \ to $ z \中的初始数据得到紧凑。因此,可以看到有效的动力学可产生高频振荡和较大的磁性漂移。在第二步中,我们通过使用几乎不变子空间的理论表明,这种渐近描述是在多个以上的扰动下稳定的,这些扰动消失了,这些扰动消失了。

We study the large field limit in Schrödinger equations with magnetic vector potentials describing translationally invariant $B$-fields with respect to the $z$-axis. In a first step, using regular perturbation theory, we derive an approximate description of the solution, provided the initial data is compactly supported in the Fourier-variable dual to $z\in \mathbb R$. The effective dynamics is thereby seen to produce high-frequency oscillations and large magnetic drifts. In a second step we show, by using the theory of almost invariant subspaces, that this asymptotic description is stable under polynomially bounded perturbations that vanish in the vicinity of the origin.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源