论文标题
直接测量$^{22} \ rm {ne}(α,γ)^{26} \ rm {mg} $反应中低能共振
Direct measurement of the low energy resonances in $^{22}\rm{Ne}(α,γ)^{26}\rm{Mg}$ reaction
论文作者
论文摘要
$^{22} \ rm {ne}(α,γ)^{26} \ rm {mg} $是恒星氦燃烧环境中的重要反应,因为它直接与s-process的主要中子来源竞争,$^{22}} \ rm {ne} ne}(ne} $ n}($ n)^$ n ne) $^{22} \ rm {ne}(α,γ)^{26} \ rm {mg} $的反应速率分别以$e_α^{lab} $ = 650 $ = 650和830 keV为主导。 $e_α^{lab} $ = 830 keV共振先前已经测量,但是先前的测量中存在一些不确定性。我们使用植入的$^{22} $ ne目标确认了$e_α^{lab} $ = 830 keV共振的测量。我们获得了$ωγ$ = 35 $ \ pm $ 4 $μev$的共振强度,并提供了与以前的研究相比,$ωγ$ = 35 $ 2 $ 2 $μev$的当前和先前测量值的加权平均值和先前的测量值减少了不确定性。我们还试图第一次直接在$e_α^{lab} $ = 650 keV处测量预测共振的强度,并发现$ωγ$ $ \ $ \ mathrm {<0.15} $ $ $μev$的上限为此。此外,我们还研究了$ e_ {p}^{lab} $ = 851 $^{22} \ rm {ne}(p,p,γ)^{23} \ rm {na} $,并获得了$ωγ$ = 9.2 $ 0.7 ev的共振强度,并获得了$ 0.7 ev的uncties uncecties uncties compictiase uncesties compteriate uncties uncectiate。
The $^{22}\rm{Ne}(α,γ)^{26}\rm{Mg}$ is an important reaction in stellar helium burning environments as it competes directly with one of the main neutron sources for the s-process, the $^{22}\rm{Ne}(α,n)^{25}\rm{Mg}$ reaction. The reaction rate of the $^{22}\rm{Ne}(α,γ)^{26}\rm{Mg}$ is dominated by the low energy resonances at $E_α^{lab}$ = 650 and 830 keV respectively. The $E_α^{lab}$ = 830 keV resonance has been measured previously, but there are some uncertainties in the previous measurements. We confirmed the measurement of the $E_α^{lab}$ = 830 keV resonance using implanted $^{22}$Ne targets. We obtained a resonance strength of $ωγ$ = 35 $\pm$ 4 $μeV$, and provide a weighted average of the present and previous measurements of $ωγ$ = 35 $\pm$ 2 $μeV$ with reduced uncertainties compared to previous studies. We also attempted to measure the strength of the predicted resonance at $E_α^{lab}$ = 650 keV directly for the first time and found an upper limit of $ωγ$ $\mathrm{<0.15}$ $μeV$ for the strength of this resonance. In addition, we also studied the $E_{P}^{lab}$= 851 keV resonance in $^{22}\rm{Ne}(p,γ)^{23}\rm{Na}$, and obtained a resonance strength of $ωγ$ = 9.2 $\pm$ 0.7 eV with significantly lower uncertainties compared to previous measurements.