论文标题

对大小和显微镜的深度学习特征口腔癌的提取和分类:增强的卷积神经网络

Deep Learning for Size and Microscope Feature Extraction and Classification in Oral Cancer: Enhanced Convolution Neural Network

论文作者

Joshi, Prakrit, Alsadoon, Omar Hisham, Alsadoon, Abeer, AlSallami, Nada, Rashid, Tarik A., Prasad, P. W. C., Haddad, Sami

论文摘要

背景和目的:过度合适的问题一直是深度学习技术背后未能在口腔癌图像分类中实施的原因。这项研究的目的是通过使用卷积神经网络通过深度学习算法来准确地生成所需的尺寸缩小功能图。方法论:所提出的系统由增强的卷积神经网络组成,该卷积神经网络使用自动编码器技术来提高特征提取过程的效率并压缩信息。在此技术中,进行了未解决和反卷积以生成输入数据,以最大程度地减少输入数据和输出数据之间的差异。此外,它通过学习网络来减少过度拟合来提取输入数据集中的特征特征,从而从这些功能中再生输入数据。结果:使用不同的共聚焦激光镜(CLE)图像时,可以实现不同的精度和处理时间值。结果表明,提出的解决方案比当前系统更好。此外,提出的系统平均将分类准确性提高了5〜5.5%,并将平均处理时间缩短了20〜30毫秒。结论:提出的系统着重于CLE图像的不同解剖位置的口腔癌细胞的准确分类。最后,这项研究使用解决过度拟合问题的自动编码器方法提高了准确性和处理时间。

Background and Aim: Over-fitting issue has been the reason behind deep learning technology not being successfully implemented in oral cancer images classification. The aims of this research were reducing overfitting for accurately producing the required dimension reduction feature map through Deep Learning algorithm using Convolutional Neural Network. Methodology: The proposed system consists of Enhanced Convolutional Neural Network that uses an autoencoder technique to increase the efficiency of the feature extraction process and compresses information. In this technique, unpooling and deconvolution is done to generate the input data to minimize the difference between input and output data. Moreover, it extracts characteristic features from the input data set to regenerate input data from those features by learning a network to reduce overfitting. Results: Different accuracy and processing time value is achieved while using different sample image group of Confocal Laser Endomicroscopy (CLE) images. The results showed that the proposed solution is better than the current system. Moreover, the proposed system has improved the classification accuracy by 5~ 5.5% on average and reduced the average processing time by 20 ~ 30 milliseconds. Conclusion: The proposed system focuses on the accurate classification of oral cancer cells of different anatomical locations from the CLE images. Finally, this study enhances the accuracy and processing time using the autoencoder method that solves the overfitting problem.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源