论文标题
简单确定性O(n log n)算法找到ERDőS-GINZBURG-ZIV定理的解决方案
Simple deterministic O(n log n) algorithm finding a solution of Erdős-Ginzburg-Ziv theorem
论文作者
论文摘要
Erdős-Ginzburg-Ziv定理是添加数理论的著名定理,该理论的任何顺序$ 2N-1 $整数包含$ n $元素的子序列,其总和为$ n $的倍数。在本文中,我们提供了一种算法,以查找$ \ Mathcal {o}(n \ log n)$ time的ERDőS-GINZBURG-ZIV定理的解决方案。这是第一个已知的确定性$ \ MATHCAL {O}(n \ log n)$ time算法找到ERDőS-GINZBURG-ZIV定理的解决方案。
Erdős-Ginzburg-Ziv theorem is a famous theorem in additive number theory, which states any sequence of $2n-1$ integers contains a subsequence of $n$ elements, with their sum being a multiple of $n$. In this article, we provide an algorithm finding a solution of Erdős-Ginzburg-Ziv theorem in $\mathcal{O}(n \log n)$ time. This is the first known deterministic $\mathcal{O}(n \log n)$ time algorithm finding a solution of Erdős-Ginzburg-Ziv theorem.