论文标题

简单确定性O(n log n)算法找到ERDőS-GINZBURG-ZIV定理的解决方案

Simple deterministic O(n log n) algorithm finding a solution of Erdős-Ginzburg-Ziv theorem

论文作者

Choi, Seokhwan, Kang, Hanpil, Lim, Dongjae

论文摘要

Erdős-Ginzburg-Ziv定理是添加数理论的著名定理,该理论的任何顺序$ 2N-1 $整数包含$ n $元素的子序列,其总和为$ n $的倍数。在本文中,我们提供了一种算法,以查找$ \ Mathcal {o}(n \ log n)$ time的ERDőS-GINZBURG-ZIV定理的解决方案。这是第一个已知的确定性$ \ MATHCAL {O}(n \ log n)$ time算法找到ERDőS-GINZBURG-ZIV定理的解决方案。

Erdős-Ginzburg-Ziv theorem is a famous theorem in additive number theory, which states any sequence of $2n-1$ integers contains a subsequence of $n$ elements, with their sum being a multiple of $n$. In this article, we provide an algorithm finding a solution of Erdős-Ginzburg-Ziv theorem in $\mathcal{O}(n \log n)$ time. This is the first known deterministic $\mathcal{O}(n \log n)$ time algorithm finding a solution of Erdős-Ginzburg-Ziv theorem.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源