论文标题

猎鹰:不一致的ALC本体论的可扩展推理

FALCON: Scalable Reasoning over Inconsistent ALC Ontologies

论文作者

Hinnerichs, Tilman, Tang, Zhenwei, Peng, Xi, Zhang, Xiangliang, Hoehndorf, Robert

论文摘要

本体论是最富有的知识来源之一。现实世界的本体通常包含数千个公理,通常是人制造的。因此,它们可能包含不一致的信息和不完整的信息,这些信息可能会损害经典的推理者计算被认为是有用的需求。为了克服这两个挑战,我们提出了Falcon,Falcon是一个模糊的本体神经推理者,以近似于ALC本体论的推理。我们为经典ALC推理器中的模型生成步骤提供了近似技术。我们的近似值不能保证构建确切的逻辑模型,而可以近似任意模型,这对于某些大本体论而言明显更快。此外,通过对多个近似逻辑模型进行采样,我们的技术也支持本体不一致的概述。理论结果表明,越来越多的模型导致更接近,即,对ALC占用的忠实近似。实验结果表明,猎鹰在存在不一致的情况下实现了近似的推理和推理。我们的实验进一步证明了如何通过合并在ALC中表达的知识来改善生物医学的知识库完成。

Ontologies are one of the richest sources of knowledge. Real-world ontologies often contain thousands of axioms and are often human-made. Hence, they may contain inconsistency and incomplete information which may impair classical reasoners to compute entailments that are considered as useful. To overcome these two challenges, we propose FALCON, a Fuzzy Ontology Neural reasoner to approximate reasoning over ALC ontologies. We provide an approximate technique for the model generation step in classical ALC reasoners. Our approximation is not guaranteed to construct exact logical models, but can approximate arbitrary models, which is notably faster for some large ontologies. Moreover, by sampling multiple approximate logical models, our technique supports approximate entailment also over inconsistent ontologies. Theoretical results show that more models generated lead to closer, i.e., faithful approximation of entailment over ALC entailments. Experimental results show that FALCON enables approximate reasoning and reasoning in the presence of inconsistency. Our experiments further demonstrate how ontologies can improve knowledge base completion in biomedicine by incorporating knowledge expressed in ALC.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源