论文标题

将变量量子本质量扩展到有限温度

Extending the Variational Quantum Eigensolver to Finite Temperatures

论文作者

Selisko, Johannes, Amsler, Maximilian, Hammerschmidt, Thomas, Drautz, Ralf, Eckl, Thomas

论文摘要

我们提出了一个称为量子-VQT(QVQT)的变分量子热剂(VQT),该变量将变异量子eigensolver(VQE)扩展到有限的温度。 QVQT利用两个变异电路之间的中间测量来编码量子设备上的密度矩阵。经典优化提供了热状态,同时也提供了量子机械系统的所有相关激发态。我们证明了两个不同的自旋系统的QVQT的功能。首先,我们分析了QVQT作为电路深度的函数和一维海森堡链的温度的函数。其次,我们使用激发态来绘制二维J1-J2海森伯格模型的完整,依赖温度的相图。数值实验证明了我们的方法的效率,可以很容易地将其应用于当前可用的NISQ设备上有限温度下的各种量子多体系统。

We present a variational quantum thermalizer (VQT), called quantum-VQT (qVQT), which extends the variational quantum eigensolver (VQE) to finite temperatures. The qVQT makes use of an intermediate measurement between two variational circuits to encode a density matrix on a quantum device. A classical optimization provides the thermal state and, simultaneously, all associated excited states of a quantum mechanical system. We demonstrate the capabilities of the qVQT for two different spin systems. First, we analyze the performance of qVQT as a function of the circuit depth and the temperature for a 1-dimensional Heisenberg chain. Second, we use the excited states to map the complete, temperature dependent phase diagram of a 2-dimensional J1-J2 Heisenberg model. The numerical experiments demonstrate the efficiency of our approach, which can be readily applied to study various quantum many-body systems at finite temperatures on currently available NISQ devices.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源