论文标题

灵活对话代理的手动指导对话

Manual-Guided Dialogue for Flexible Conversational Agents

论文作者

Takanobu, Ryuichi, Zhou, Hao, Lin, Yankai, Li, Peng, Zhou, Jie, Huang, Minlie

论文摘要

如何有效地构建和使用对话数据,以及如何在不同域中在不同域中部署模型可能是建立面向任务的对话系统的两个关键问题。在本文中,我们提出了一种新颖的手动指导对话方案,以减轻这些问题,在该方案中,代理商从对话和手册中学习任务。该手册是一个非结构化的文本文档,可指导代理在对话过程中与用户和数据库进行交互。我们提出的方案降低了对话模型对细粒领域本体论的依赖性,并使它们更灵活以适应各种领域。然后,我们为支持我们的方案提供了完全注销的多域数据集Magdial。它介绍了三个对话建模子任务:指令匹配,参数填充和响应生成。对这些子任务进行建模与人类代理的行为模式一致。实验表明,手动指导的对话方案提高了构建对话系统中的数据效率和域可伸缩性。数据集和基准将公开用于促进未来的研究。

How to build and use dialogue data efficiently, and how to deploy models in different domains at scale can be two critical issues in building a task-oriented dialogue system. In this paper, we propose a novel manual-guided dialogue scheme to alleviate these problems, where the agent learns the tasks from both dialogue and manuals. The manual is an unstructured textual document that guides the agent in interacting with users and the database during the conversation. Our proposed scheme reduces the dependence of dialogue models on fine-grained domain ontology, and makes them more flexible to adapt to various domains. We then contribute a fully-annotated multi-domain dataset MagDial to support our scheme. It introduces three dialogue modeling subtasks: instruction matching, argument filling, and response generation. Modeling these subtasks is consistent with the human agent's behavior patterns. Experiments demonstrate that the manual-guided dialogue scheme improves data efficiency and domain scalability in building dialogue systems. The dataset and benchmark will be publicly available for promoting future research.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源