论文标题

不确定性引导的无源域适应

Uncertainty-guided Source-free Domain Adaptation

论文作者

Roy, Subhankar, Trapp, Martin, Pilzer, Andrea, Kannala, Juho, Sebe, Nicu, Ricci, Elisa, Solin, Arno

论文摘要

无源域的适应性(SFDA)旨在通过仅使用预训练的源模型将分类器调整为未标记的目标数据集。但是,缺乏源数据和域移动使目标数据对目标数据的预测不可靠。我们建议量化源模型预测中的不确定性,并利用它来指导目标适应。为此,我们通过在网络参数上纳入诱导模型预测的分布的网络参数来构建概率源模型。通过采用拉普拉斯近似值来估算不确定性,并合并以识别不在源歧管中的目标数据点并在最大化目标数据上的共同信息时减少重量。与最近的作品不同,我们的概率处理是计算轻量级,脱离源训练和目标适应,并且不需要专门的源培训或模型体系结构的更改。我们显示了不确定性引导的SFDA比封闭设置和开放式设置中传统SFDA的优点,并提供了经验证据,即使我们的方法也不在没有调整而对强大的域转移方面更加强大。

Source-free domain adaptation (SFDA) aims to adapt a classifier to an unlabelled target data set by only using a pre-trained source model. However, the absence of the source data and the domain shift makes the predictions on the target data unreliable. We propose quantifying the uncertainty in the source model predictions and utilizing it to guide the target adaptation. For this, we construct a probabilistic source model by incorporating priors on the network parameters inducing a distribution over the model predictions. Uncertainties are estimated by employing a Laplace approximation and incorporated to identify target data points that do not lie in the source manifold and to down-weight them when maximizing the mutual information on the target data. Unlike recent works, our probabilistic treatment is computationally lightweight, decouples source training and target adaptation, and requires no specialized source training or changes of the model architecture. We show the advantages of uncertainty-guided SFDA over traditional SFDA in the closed-set and open-set settings and provide empirical evidence that our approach is more robust to strong domain shifts even without tuning.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源