论文标题

HVS启发的信号降解网络,用于明显的差异估计

HVS-Inspired Signal Degradation Network for Just Noticeable Difference Estimation

论文作者

Jin, Jian, Xue, Yuan, Zhang, Xingxing, Meng, Lili, Zhao, Yao, Lin, Weisi

论文摘要

由于深度神经网络的发展,尤其是对于最近开发的无监督的Jnd Generty模型,对公正的显着差异(JND)建模做出了重大改进。但是,他们有一个主要的缺点,即在现实世界的信号域而不是在人脑中的感知结构域中评估了生成的JND。当在这两个域中评估JND时,存在明显的差异,因为在现实世界中的视觉信号在使用人类视觉系统(HVS)传递到大脑之前对其进行了编码。因此,我们提出了一个受HVS启发的信号降解网络进行JND估计。为了实现这一目标,我们仔细分析了JND主观观察中的HVS感知过程,以获得相关的见解,然后设计受HVS启发的信号降解(HVS-SD)网络,以表示HVS中的信号降解。一方面,知识渊博的HVS-SD使我们能够评估感知域中的JND。另一方面,它提供了更准确的先验信息,以更好地指导JND生成。此外,考虑到合理的JND不应导致视觉注意力转移的要求,提出了视觉注意力丧失以控制JND的生成。实验结果表明,所提出的方法实现了SOTA性能,以准确估计HVS的冗余。源代码将在https://github.com/jianjin008/hvs-sd-jnd上找到。

Significant improvement has been made on just noticeable difference (JND) modelling due to the development of deep neural networks, especially for the recently developed unsupervised-JND generation models. However, they have a major drawback that the generated JND is assessed in the real-world signal domain instead of in the perceptual domain in the human brain. There is an obvious difference when JND is assessed in such two domains since the visual signal in the real world is encoded before it is delivered into the brain with the human visual system (HVS). Hence, we propose an HVS-inspired signal degradation network for JND estimation. To achieve this, we carefully analyze the HVS perceptual process in JND subjective viewing to obtain relevant insights, and then design an HVS-inspired signal degradation (HVS-SD) network to represent the signal degradation in the HVS. On the one hand, the well learnt HVS-SD enables us to assess the JND in the perceptual domain. On the other hand, it provides more accurate prior information for better guiding JND generation. Additionally, considering the requirement that reasonable JND should not lead to visual attention shifting, a visual attention loss is proposed to control JND generation. Experimental results demonstrate that the proposed method achieves the SOTA performance for accurately estimating the redundancy of the HVS. Source code will be available at https://github.com/jianjin008/HVS-SD-JND.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源