论文标题
基于网络的流行病模型中的参数可识别性
On parameter identifiability in network-based epidemic models
论文作者
论文摘要
开发了数学流行病学中的许多模型,目的是为参数估计然后预测提供一个框架。众所周知,参数并不总是可以唯一地识别。在本文中,我们考虑基于网络的平均场模型,并探讨有关流行病的观察时参数可识别性的问题。利用大多数基于网络的平均场模型的分析性障碍,例如,用于领先的特征值和最终流行病大小的明确分析表达式,我们设置了参数可识别性问题,以找到耦合方程式系统的解决方案或解决方案。更确切地说,在观察/测量生长速率和最终流行病大小的情况下,我们试图确定导致这些测量值的参数值。我们特别关心将传输速率与网络密度分开。为此,我们定义了强且弱的可识别性,我们发现除了最简单的模型,参数不能唯一确定,也就是说它们是薄弱的。这意味着存在多个解决方案(无限度量的多种解决方案),这会导致与数据接近的模型输出。识别,正式化和分析描述此问题应更好地理解与数据拟合模型相关的复杂性。
Many models in mathematical epidemiology are developed with the aim to provide a framework for parameter estimation and then prediction. It is well-known that parameters are not always uniquely identifiable. In this paper we consider network-based mean-field models and explore the problem of parameter identifiability when observations about an epidemic are available. Making use of the analytical tractability of most network-based mean-field models, e.g., explicit analytical expressions for leading eigenvalue and final epidemic size, we set up the parameter identifiability problem as finding the solution or solutions of a system of coupled equations. More precisely, subject to observing/measuring growth rate and final epidemic size, we seek to identify parameter values leading to these measurements. We are particularly concerned with disentangling transmission rate from the network density. To do this we define strong and weak identifiability and we find that except for the simplest model, parameters cannot be uniquely determined, that is they are weakly identifiable. This means that there exists multiple solutions (a manifold of infinite measure) which give rise to model output that is close to the data. Identifying, formalising and analytically describing this problem should lead to a better appreciation of the complexity involved in fitting models with many parameters to data.