论文标题

知识注射的联合学习

Knowledge-Injected Federated Learning

论文作者

Fan, Zhenan, Zhou, Zirui, Pei, Jian, Friedlander, Michael P., Hu, Jiajie, Li, Chengliang, Zhang, Yong

论文摘要

联合学习是一种来自分散数据集的培训模型的新兴技术。在许多应用程序中,参与联合学习系统的数据所有者不仅拥有数据,还拥有一组域知识。这些知识包括人类的知识和工艺,这对联邦学习任务非常有帮助。在这项工作中,我们提出了一个联合学习框架,该框架允许注入参与者的领域知识,其中关键思想是通过本地知识来完善全球模型。我们认为的方案是由真正的行业级别应用激励的,我们证明了我们对该应用程序的有效性。

Federated learning is an emerging technique for training models from decentralized data sets. In many applications, data owners participating in the federated learning system hold not only the data but also a set of domain knowledge. Such knowledge includes human know-how and craftsmanship that can be extremely helpful to the federated learning task. In this work, we propose a federated learning framework that allows the injection of participants' domain knowledge, where the key idea is to refine the global model with knowledge locally. The scenario we consider is motivated by a real industry-level application, and we demonstrate the effectiveness of our approach to this application.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源