论文标题
公平分类计划
Fair Assortment Planning
论文作者
论文摘要
从在线零售商店到社交媒体平台的许多在线平台都采用算法来优化其提供的各种物品(例如产品和内容)。这些算法通常专注于实现平台的目标,突出具有最高知名度或收入的项目。但是,这种方法可能会损害其余项目的机会平等,从而导致内容多样性较少,并增加了平台的监管审查。在此激励的基础上,我们介绍并研究了一个公平的分类计划问题,该问题通过成对公平实现机会平等,这需要提供任何两个项目类似的结果。我们表明,该问题可以作为线性程序(LP)提出,该程序称为(Fair),可在所有可行分类的分布中进行优化。为了找到(公平)的近乎最佳的解决方案,我们提出了一个基于椭圆形方法的框架,该框架需要多项式时间分离甲骨文到LP的双重双重。我们表明,找到最佳的分离甲骨文是双重问题是一个NP完整的问题,因此我们提出了一系列近似分离的甲骨文,然后导致1/2-Approx。算法和问题的FPTA(公平)。近似分离的牙齿是通过(i)显示与LP双重的分离甲骨文设计的,等效于解决一系列无限的参数化背包问题,以及(ii)利用背包问题的结构。最后,我们对合成数据和现实世界的Movielens数据进行数值研究,展示了我们的算法的有效性,并提供了对平台公平价格的见解。
Many online platforms, ranging from online retail stores to social media platforms, employ algorithms to optimize their offered assortment of items (e.g., products and contents). These algorithms often focus exclusively on achieving the platforms' objectives, highlighting items with the highest popularity or revenue. This approach, however, can compromise the equality of opportunities for the rest of the items, in turn leading to less content diversity and increased regulatory scrutiny for the platform. Motivated by this, we introduce and study a fair assortment planning problem that enforces equality of opportunities via pairwise fairness, which requires any two items to be offered similar outcomes. We show that the problem can be formulated as a linear program (LP), called (FAIR), that optimizes over the distribution of all feasible assortments. To find a near-optimal solution to (FAIR), we propose a framework based on the Ellipsoid method, which requires a polynomial-time separation oracle to the dual of the LP. We show that finding an optimal separation oracle to the dual problem is an NP-complete problem, and hence we propose a series of approximate separation oracles, which then result in a 1/2-approx. algorithm and an FPTAS for Problem (FAIR). The approximate separation oracles are designed by (i) showing the separation oracle to the dual of the LP is equivalent to solving an infinite series of parameterized knapsack problems, and (ii) leveraging the structure of knapsack problems. Finally, we perform numerical studies on both synthetic data and real-world MovieLens data, showcasing the effectiveness of our algorithms and providing insights into the platform's price of fairness.