论文标题

$ 8 $ -Contraction-Contractication图的属性,没有$ k_7 $ binor

Properties of $8$-contraction-critical graphs with no $K_7$ minor

论文作者

Rolek, Martin, Song, Zi-Xia, Thomas, Robin

论文摘要

在著名的哈德威格(Hadwiger)的猜想中,我们研究了$ 8 $ contraction-Contraction-Contraction-Contraction-Contrication-thake的属性;我们证明,每$ 8 $ -Contraction-Contraction-Contraction-Contrical图形最多都有一个顶点$ 8 $,其中图$ g $是$ 8 $ -Contraction-Contical-Contraction-Contical-Contraction-Contractical-Contractical-Contraction-Contraction-Contractical-G $不是$ 7 $ -Colorable-colorableable-colorable,但$ G $的每一个适当的少数$ G $ is $ 7 $ - 颜色$ -Colorable。这是我们努力证明,没有$ k_7 $ binor的每张图的努力是$ 7 $ - 油腻的,这仍然是开放的。

Motivated by the famous Hadwiger's Conjecture, we study the properties of $8$-contraction-critical graphs with no $K_7$ minor; we prove that every $8$-contraction-critical graph with no $K_7$ minor has at most one vertex of degree $8$, where a graph $G$ is $8$-contraction-critical if $G$ is not $7$-colorable but every proper minor of $G$ is $7$-colorable. This is one step in our effort to prove that every graph with no $K_7$ minor is $7$-colorable, which remains open.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源