论文标题
自动水下车辆的域感知控制的神经模型
Domain-aware Control-oriented Neural Models for Autonomous Underwater Vehicles
论文作者
论文摘要
传统的基于物理的建模是用于复杂非线性系统(例如自动水下车辆(AUV))的控制设计中的耗时瓶颈。相比之下,纯粹的数据驱动模型虽然方便且迅速地获得,但需要大量的观察结果,并且缺乏针对安全至关重要系统的操作保证。利用可用的部分表征动态的数据驱动模型具有在典型的数据限制方案中为高价值复杂系统提供可靠的系统模型,从而避免了数月的数月昂贵的专家建模时间。在这项工作中,我们探索了专家模型和纯数据驱动建模之间的中间环。我们提出了面向控制的参数模型,具有不同水平的域意识,这些模型利用已知的系统结构和先前的物理知识来创建约束的深神经动力学系统模型。我们采用通用微分方程来构建AUV动力学的数据驱动的黑框和灰色框表示。此外,我们探索了一种混合公式,该制剂明确模拟与不完美的灰色框模型相关的残余误差。我们比较了学习模型对初始条件和控制输入的不同分布的预测性能,以评估其准确性,概括和对控制的适用性。
Conventional physics-based modeling is a time-consuming bottleneck in control design for complex nonlinear systems like autonomous underwater vehicles (AUVs). In contrast, purely data-driven models, though convenient and quick to obtain, require a large number of observations and lack operational guarantees for safety-critical systems. Data-driven models leveraging available partially characterized dynamics have potential to provide reliable systems models in a typical data-limited scenario for high value complex systems, thereby avoiding months of expensive expert modeling time. In this work we explore this middle-ground between expert-modeled and pure data-driven modeling. We present control-oriented parametric models with varying levels of domain-awareness that exploit known system structure and prior physics knowledge to create constrained deep neural dynamical system models. We employ universal differential equations to construct data-driven blackbox and graybox representations of the AUV dynamics. In addition, we explore a hybrid formulation that explicitly models the residual error related to imperfect graybox models. We compare the prediction performance of the learned models for different distributions of initial conditions and control inputs to assess their accuracy, generalization, and suitability for control.