论文标题
Rudi:通过自动统计的生成和规则蒸馏来解释行为序列模型
RuDi: Explaining Behavior Sequence Models by Automatic Statistics Generation and Rule Distillation
论文作者
论文摘要
风险评分系统已被广泛部署在许多应用程序中,这些应用程序根据用户的行为序列将风险分数分配给了。尽管许多具有复杂设计的深度学习方法已经取得了令人鼓舞的结果,但由于公平,解释性和合规性考虑,黑框的性质阻碍了他们的应用。在这些敏感情况下,基于规则的系统被认为是可靠的。但是,构建规则系统是劳动密集型的。专家需要从用户行为序列,基于统计数据的设计规则中找到信息统计信息,并为每个规则分配权重。在本文中,我们弥合了有效但黑色框模型与透明规则模型之间的差距。我们提出了一种两阶段的方法Rudi,该方法将黑盒教师模型的知识提炼成基于规则的学生模型。我们设计了一种基于蒙特卡洛树搜索的统计生成方法,该方法可以在第一阶段提供一组信息统计信息。然后,通过模仿教师模型的输出,将统计数据与我们提出的神经逻辑网络组成逻辑规则。我们在三个现实世界公共数据集和一个工业数据集上评估了Rudi,以证明其有效性。
Risk scoring systems have been widely deployed in many applications, which assign risk scores to users according to their behavior sequences. Though many deep learning methods with sophisticated designs have achieved promising results, the black-box nature hinders their applications due to fairness, explainability, and compliance consideration. Rule-based systems are considered reliable in these sensitive scenarios. However, building a rule system is labor-intensive. Experts need to find informative statistics from user behavior sequences, design rules based on statistics and assign weights to each rule. In this paper, we bridge the gap between effective but black-box models and transparent rule models. We propose a two-stage method, RuDi, that distills the knowledge of black-box teacher models into rule-based student models. We design a Monte Carlo tree search-based statistics generation method that can provide a set of informative statistics in the first stage. Then statistics are composed into logical rules with our proposed neural logical networks by mimicking the outputs of teacher models. We evaluate RuDi on three real-world public datasets and an industrial dataset to demonstrate its effectiveness.