论文标题

分数运算符的傅立叶方法

Fourier methods for fractional-order operators

论文作者

Grubb, Gerd

论文摘要

这是一项关于使用傅立叶变换方法在处理边界问题的调查的调查,用于分数laplacian $(-δ)^a $(0 <a <1),以及在$ r^n $中的有限的开放式$ω$上。演示开始于基础级别。详细说明了两个点:1)$ d^a $($ d(x)= dist(x,dΩ)$,如何出现在图片中,这与均质dirichlet问题的精确解决方案空间是所谓的A传递空间。 2)局部非均匀的dirichlet条件的自然定义$γ_0(u/d^{a-1})=φ$。我们还简要介绍了一些进一步的发展:进化问题(对于$ d_t u -r^+pu = f(x,t)$)和解决问题(对于$ pu -λu= f $),也有非零边界条件。零件的集成,格林的公式。

This is a survey on the use of Fourier transformation methods in the treatment of boundary problems for the fractional Laplacian $(-Δ)^a$ (0<a<1), and pseudodifferential generalizations P, over a bounded open set $Ω$ in $R^n$. The presentation starts at an elementary level. Two points are explained in detail: 1) How the factor $d^a$, with $d(x)=dist(x,dΩ)$, comes into the picture, related to the fact that the precise solution spaces for the homogeneous Dirichlet problem are so-called a-transmission spaces. 2) The natural definition of a local nonhomogeneous Dirichlet condition $γ_0(u/d^{a-1})=φ$. We also give brief accounts of some further developments: Evolution problems (for $d_t u - r^+Pu = f(x,t)$) and resolvent problems (for $Pu-λu=f$), also with nonzero boundary conditions. Integration by parts, Green's formula.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源