论文标题
情绪对目标语音提取和语音分离的影响分析
Analysis of impact of emotions on target speech extraction and speech separation
论文作者
论文摘要
最近,盲目的语音分离(BSS)和目标语音提取(TSE)的表现已取得了长足的进步。但是,大多数作品都专注于相对良好的控制条件,例如阅读语音。在更现实的情况下,性能可能会降低。引起这种降解的因素之一可能是固有的说话者变异性,例如情绪,通常在现实的语音中发生。在本文中,我们研究了情绪对TSE和BSS的影响。我们创建了一个新的测试数据集,以评估TSE和BSS。该数据集结合了Librispeech和Ryerson Audio-Visual Visual Espections and Song(Ravdess)。通过受控的实验,我们可以分析不同情绪对BS和TSE性能的影响。我们观察到BSS对情绪相对强大,而TSE需要识别和提取目标扬声器的语音,对情绪更加敏感。在比较说话者验证实验中,我们表明,在处理情感语音时,确定目标扬声器可能特别具有挑战性。使用我们的发现,我们概述了可能改善BSS和TSE系统对情感言论的鲁棒性的潜在方向。
Recently, the performance of blind speech separation (BSS) and target speech extraction (TSE) has greatly progressed. Most works, however, focus on relatively well-controlled conditions using, e.g., read speech. The performance may degrade in more realistic situations. One of the factors causing such degradation may be intrinsic speaker variability, such as emotions, occurring commonly in realistic speech. In this paper, we investigate the influence of emotions on TSE and BSS. We create a new test dataset of emotional mixtures for the evaluation of TSE and BSS. This dataset combines LibriSpeech and Ryerson Audio-Visual Database of Emotional Speech and Song (RAVDESS). Through controlled experiments, we can analyze the impact of different emotions on the performance of BSS and TSE. We observe that BSS is relatively robust to emotions, while TSE, which requires identifying and extracting the speech of a target speaker, is much more sensitive to emotions. On comparative speaker verification experiments we show that identifying the target speaker may be particularly challenging when dealing with emotional speech. Using our findings, we outline potential future directions that could improve the robustness of BSS and TSE systems toward emotional speech.