论文标题
连贯状态的Uhlmann阶段和Uhlmann-berry信函
Uhlmann phase of coherent states and the Uhlmann-Berry correspondence
论文作者
论文摘要
我们首先用纤维束语言比较了Uhlmann和Berry阶段背后的几何框架,然后评估玻色症和费米子相干状态的Uhlmann阶段。两种相干状态的Uhlmann阶段均显示出携带几何信息并随温度而顺利降低。重要的是,随着温度降低,Uhlmann相接近相应的浆果相。与文献中的先前示例一起,我们提出了零温度极限的Uhlmann和Berry相之间的对应关系,除了某些特殊情况外,并提供了对应关系的条件证明。
We first compare the geometric frameworks behind the Uhlmann and Berry phases in a fiber-bundle language and then evaluate the Uhlmann phases of bosonic and fermionic coherent states. The Uhlmann phases of both coherent states are shown to carry geometric information and decrease smoothly with temperature. Importantly, the Uhlmann phases approach the corresponding Berry phases as temperature decreases. Together with previous examples in the literature, we propose a correspondence between the Uhlmann and Berry phases in the zero-temperature limit as a general property except some special cases and present a conditional proof of the correspondence.