论文标题
AVIST:视觉对象跟踪的基准不良可见性
AVisT: A Benchmark for Visual Object Tracking in Adverse Visibility
论文作者
论文摘要
最近在视觉跟踪中成功的关键因素之一是专用基准的可用性。尽管很大程度上受益于跟踪研究,但现有的基准并没有与以前相同的难度,而最近的跟踪器的实现主要是由于(i)引入了更复杂的基于变形金刚的方法,并且(ii)缺乏不同的情景,具有不良的可见性,例如恶劣的天气,伪装和成像效果。 我们介绍了Avist,这是一种专门的基准,用于在不同的情况下进行视觉跟踪。 Avist包括120个具有80k注释框架的具有挑战性的序列,涵盖了18种不同的方案,这些场景大致分为五个具有42个对象类别的属性。远景的主要贡献是多种多样的,具有挑战性的情况,涵盖了恶劣的天气条件,例如浓雾,大雨和沙尘暴;障碍物的影响,包括火,阳光和溅水;不利成像效应,例如,弱光;目标效应,包括小目标和分散物体以及伪装。我们进一步基于17个流行和最新的Avist跟踪器,详细分析了它们跨属性的跟踪性能,这表明了绩效改善的巨大空间。我们认为,贪婪者可以通过补充现有基准,开发新的创意跟踪解决方案,以继续推动最先进的界限,从而极大地使跟踪社区受益。我们的数据集以及完整的跟踪性能评估可在以下网址提供:https://github.com/visionml/pytracking
One of the key factors behind the recent success in visual tracking is the availability of dedicated benchmarks. While being greatly benefiting to the tracking research, existing benchmarks do not pose the same difficulty as before with recent trackers achieving higher performance mainly due to (i) the introduction of more sophisticated transformers-based methods and (ii) the lack of diverse scenarios with adverse visibility such as, severe weather conditions, camouflage and imaging effects. We introduce AVisT, a dedicated benchmark for visual tracking in diverse scenarios with adverse visibility. AVisT comprises 120 challenging sequences with 80k annotated frames, spanning 18 diverse scenarios broadly grouped into five attributes with 42 object categories. The key contribution of AVisT is diverse and challenging scenarios covering severe weather conditions such as, dense fog, heavy rain and sandstorm; obstruction effects including, fire, sun glare and splashing water; adverse imaging effects such as, low-light; target effects including, small targets and distractor objects along with camouflage. We further benchmark 17 popular and recent trackers on AVisT with detailed analysis of their tracking performance across attributes, demonstrating a big room for improvement in performance. We believe that AVisT can greatly benefit the tracking community by complementing the existing benchmarks, in developing new creative tracking solutions in order to continue pushing the boundaries of the state-of-the-art. Our dataset along with the complete tracking performance evaluation is available at: https://github.com/visionml/pytracking