论文标题

分数操作员作为操作员值曲线的痕迹

Fractional operators as traces of operator-valued curves

论文作者

Musina, Roberta, Nazarov, Alexander I.

论文摘要

We relate non integer powers ${\mathcal L}^{s}$, $s>0$ of a given (unbounded) positive self-adjoint operator $\mathcal L$ in a real separable Hilbert space $\mathcal H$ with a certain differential operator of order $2\lceil{s}\rceil$, acting on even curves $\mathbb R\to \ Mathcal H $。这扩展了Caffarelli-silvestre和stinga--torrea关于通过扩展问题对差分运算符的分数幂的表征的结果。

We relate non integer powers ${\mathcal L}^{s}$, $s>0$ of a given (unbounded) positive self-adjoint operator $\mathcal L$ in a real separable Hilbert space $\mathcal H$ with a certain differential operator of order $2\lceil{s}\rceil$, acting on even curves $\mathbb R\to \mathcal H$. This extends the results by Caffarelli--Silvestre and Stinga--Torrea regarding the characterization of fractional powers of differential operators via an extension problem.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源